Cumulant analysis in fluorescence fluctuation spectroscopy.

نویسنده

  • Joachim D Müller
چکیده

A novel technique for the analysis of fluorescence fluctuation experiments is introduced. Fluorescence cumulant analysis (FCA) exploits the factorial cumulants of the photon counts and resolves heterogeneous samples based on differences in brightness. A simple analytical model connects the cumulants of the photon counts with the brightness epsilon and the number of molecules N in the optical observation volume for each fluorescent species. To provide the tools for a rigorous error analysis of FCA, expressions for the variance of factorial cumulants are developed and tested. We compare theory with experiment by analyzing dye mixtures and simple fluorophore solutions with FCA. A comparison of FCA with photon-counting histogram (PCH) analysis, a related technique, shows that both methods give identical results within experimental uncertainty. Both FCA and PCH are restricted to data sampling times that are short compared to the diffusion time of molecules through the observation volume of the instrument. But FCA theory, in contrast to PCH, can be extended to treat arbitrary sampling times. Here, we derive analytical expressions for the second factorial cumulant as a function of the sampling time and demonstrate that the theory successfully models fluorescence fluctuation data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-integrated fluorescence cumulant analysis in fluorescence fluctuation spectroscopy.

We introduce a new analysis technique for fluorescence fluctuation data. Time-integrated fluorescence cumulant analysis (TIFCA) extracts information from the cumulants of the integrated fluorescence intensity. TIFCA builds on our earlier FCA theory, but in contrast to FCA or photon counting histogram (PCH) analysis is valid for arbitrary sampling times. The motivation for long sampling times li...

متن کامل

Time-integrated fluorescence cumulant analysis and its application in living cells.

Time-integrated fluorescence cumulant analysis (TIFCA) is a data analysis technique for fluorescence fluctuation spectroscopy (FFS) that extracts information from the cumulants of the integrated fluorescence intensity. It is the first exact theory that describes the effect of sampling time on FFS experiment. Rebinning of data to longer sampling times helps to increase the signal/noise ratio of ...

متن کامل

543-Pos Board B422 Probing Nucleocytoplasmic Transport with Fluorescence Fluctuation Spectroscopy and Two-photon Activation of Photoactivable GFP

543-Pos Board B422 Probing Nucleocytoplasmic Transport with Fluorescence Fluctuation Spectroscopy and Two-photon Activation of Photoactivable GFP Yan Chen, Bin Wu, Joachim Mueller. University of Minnesota, Minneapolis, MN, USA. Large proteins and macromolecular complexes have to enter and leave the nucleus in an efficient and selective manner. Macromolecules that are greater than 40 kD are tran...

متن کامل

τFCS: Multi-Method Global Analysis Enhances Resolution and Sensitivity in Fluorescence Fluctuation Measurements

Fluorescence fluctuation methods have become invaluable research tools for characterizing the molecular-level physical and chemical properties of complex systems, such as molecular concentrations, dynamics, and the stoichiometry of molecular interactions. However, information recovery via curve fitting analysis of fluctuation data is complicated by limited resolution and challenges associated w...

متن کامل

Fluorescence fluctuation spectroscopy in subdiffraction focal volumes.

We establish fluorescence fluctuation spectroscopy (FFS) with nanoscale detection volumes generated by stimulated emission depletion. Our method applies fluorescence correlation spectroscopy and fluorescence intensity distribution analysis to extract molecular information about mobilities and fluorescence emission in solution. The combination of correlation analysis with that of photon intensit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2004